4.8 Article

Mass-Selective Soft-Landing of Protein Assemblies with Controlled Landing Energies

Journal

ANALYTICAL CHEMISTRY
Volume 86, Issue 16, Pages 8321-8328

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac5018327

Keywords

-

Funding

  1. Wellcome Trust JIF [060208/Z/00/Z]
  2. WT [093305/Z/10/Z]
  3. Engineering and Physical Sciences Research Council, U.K.
  4. EU (PROSPECTS Network)
  5. Medical Research Council, U.K.
  6. Engineering and Physical Sciences Research Council [EP/J01835X/1] Funding Source: researchfish
  7. Medical Research Council [G1000819] Funding Source: researchfish
  8. EPSRC [EP/J01835X/1] Funding Source: UKRI
  9. MRC [G1000819] Funding Source: UKRI
  10. Wellcome Trust [093305/Z/10/Z] Funding Source: Wellcome Trust

Ask authors/readers for more resources

Selection and soft-landing of bionanoparticles in vacuum is potentially a preparative approach to separate heterogeneous mixtures for high-resolution structural study or to deposit homogeneous materials for nanotechnological applications. Soft-landing of intact protein assemblies however remains challenging, due to the difficulties of manipulating these heavy species in mass-selective devices and retaining their structure during the experiment. We have developed a tandem mass spectrometer with the capability for controlled ion soft-landing and ex situ visualization of the soft-landed particles by means of transmission electron microscopy. The deposition conditions can be controlled by adjusting the kinetic energies of the ions by applying accelerating or decelerating voltages to a set of ion-steering optics. To validate this approach, we have examined two cage-like protein complexes, GroEL and ferritin, and studied the effect of soft-landing conditions on the method's throughput and the preservation of protein structure. Separation, based on mass-to-charge ratio, of holo- and apo-ferritin complexes after electrospray ionization enabled us to soft-land independently the separated complexes on a grid suitable for downstream transmission electron microscopy analysis. Following negative staining, images of the soft-landed complexes reveal that their structural integrity is largely conserved, with the characteristic central cavity of apoferritin, and iron core of holoferritin, surviving the phase transition from liquid to gas, soft-landing, and dehydration in vacuum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available