4.6 Article

Definition by functional and structural analysis of two malonyl-CoA sites in carnitine palmitoyltransferase 1A

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 25, Pages 18212-18224

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M700885200

Keywords

-

Ask authors/readers for more resources

Carnitine palmitoyltransferase 1 (CPT1) catalyzes the conversion of palmitoyl-CoA to palmitoylcarnitine in the presence of L-carnitine, thus facilitating the entry of fatty acids to mitochondria, in a process that is physiologically inhibited by malonyl-CoA. To examine the mechanism of CPT1 liver isoform (CPT1A) inhibition by malonyl-CoA, we constructed an in silico model of both its NH2- and COOH-terminal domains. Two malonyl-CoA binding sites were found. One of these, the CoA site or A site, is involved in the interactions between NH2- and COOH-terminal domains and shares the acyl-CoA hemitunnel. The other, the opposite-to-CoA site or O site, is on the opposite side of the enzyme, in the catalytic channel. The two sites share the carnitine-binding locus. To prevent the interaction between NH2- and COOH-terminal regions, we produced CPT1A E26K and K561E mutants. A double mutant E26K/K561E (swap), which was expected to conserve the interaction, was also produced. Inhibition assays showed a 12-fold decrease in the sensitivity (IC50) toward malonyl-CoA for CPT1A E26K and K561E single mutants, whereas swap mutant reverts to wild-type IC50 value. We conclude that structural interaction between both domains is critical for enzyme sensitivity to malonyl-CoA inhibition at the A site. The location of the O site for malonyl-CoA binding was supported by inhibition assays of expressed R243T mutant. The model is also sustained by kinetic experiments that indicated linear mixed type malonyl-CoA inhibition for carnitine. Malonyl-CoA alters the affinity of carnitine, and there appears to be an exponential inverse relation between carnitine Km and malonyl-CoA IC50.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available