4.6 Article

Novel cysteine-rich secretory protein in the buccal gland secretion of the parasitic lamprey, Lethenteron japonicum

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2007.04.065

Keywords

lamprey; buccal gland; plasma albumin; CRISP; primary structure; smooth muscle contraction; calcium channel; calcium channel inhibitor; cysteine-rich secretory protein; toxin; venom; protein purification; molecular evolution; blood coagulation; parasitism

Ask authors/readers for more resources

Lampreys are one of the most primitive vertebrates diverged some 500 million years ago. It has long been known that parasitic lampreys secrete anticoagulant from their buccal glands and prevent blood coagulation of host fishes. We found two major protein components of 160 and 26 kDa in the buccal gland secretion of parasitic river lamprey, Lethenteron japonicum. The larger protein was identified as river lamprey plasma albumin. The complete primary structure of the 26-kDa protein was determined by protein and cDNA analysis. It belonged to the cysteine-rich secretory protein (CRISP) superfamily that includes recently identified reptile venom ion-channel blockers. Lamprey CRISP blocked depolarization-induced contraction of rat-tail arterial smooth muscle, but showed no effect on caffeine-induced contraction. The result suggests that lamprey CRISP is an L-type Ca(2+)-channel blocker and may act as a vasodilator, which facilitates the parasite to feed on the host's blood. The lamprey CRISP protein contains a number of short insertions throughout the sequence, when aligned with reptilian venom CRISP proteins, probably due to the large evolutionary distance between the Agnatha and the Reptilia, and may represent a novel class of venom CRISP family proteins. (c) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available