4.8 Article

Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0701967104

Keywords

enzyme catalysis; nucleoticle exchange; light scattering

Ask authors/readers for more resources

G protein-coupled receptors mediate biological signals by stimulating nucleotide exchange in heterotrimeric G proteins (G alpha beta gamma). Receptor dimers have been proposed as the functional unit responsible for catalytic interaction with G alpha beta gamma. To investigate whether a G protein-coupled receptor monomer can activate G alpha beta gamma, we used the retinal photoreceptor rhodopsin and its cognate G protein transducin (G(t)) to determine the stoichiometry of rhodopsin/G(t) binding and the rate of catalyzed nucleotide exchange in G(t). Purified rhodopsin was prepared in dodecyl maltoside detergent solution. Rhodopsin was monomeric as concluded from fluorescence resonance energy transfer, copurification studies with fluorescent labeled and unlabeled rhodopsin, size exclusion chromatography, and multiangle laser light scattering. A 1:1 complex between light-activated rhodopsin and G(t) was found in the elution profiles, and one molecule of GDP was released upon complex formation. Analysis of the speed of catalytic rhodopsin/G(t) interaction yielded a maximum of approximate to 50 G(t) molecules per second and molecule of activated rhodopsin. The bimolecular rate constant is close to the diffusion limit in the diluted system. The results show that the interaction of G(t) with an activated rhodopsin monomer is sufficient for fully functional G(t) activation. Although the activation rate in solution is at the physically possible limit, the rate in the native membrane is still 10-fold higher. This is likely attributable to the precise orientation of the G protein to the membrane surface, which enables a fast docking process preceding the actual activation step. Whether docking in membranes involves the formation of rhodopsin dimers or oligomers remains to be elucidated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available