4.7 Article

Quinolone analogue inhibits tubulin polymerization and induces apoptosis via Cdk1-involved signaling pathways

Journal

BIOCHEMICAL PHARMACOLOGY
Volume 74, Issue 1, Pages 10-19

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2007.03.015

Keywords

quinolone; mitotic arrest; Cdk1; Bcl-2 family of proteins; caspase; AIF

Ask authors/readers for more resources

Cancer chemotherapeutic agents that interfere with tubulin/microtubule function are in extensive use. Quinolone is a common structure in alkaloids and its related components exhibit several pharmacological activities. In this study, we have identified the anticancer mechanisms of 2-phenyl-4-quinolone. 2-phenyl-4-quinolone displayed anti-proliferative effect in several cancer types, including hormone-resistant prostate cancer PC-3, hepatocellular carcinoma Hep3B and HepG2, non-small cell lung cancer A549 and P-glycoprotein-rich breast cancer NCI/ADR-RES cells. The IC50 values were 0.85, 1.81, 3.32, 0.90 and 1.53 mu M, respectively. 2-phenyl-4-quinolone caused G2/M arrest of the cell-cycle and a subsequent apoptosis. The turbidity assay showed an inhibitory effect on tubulin polymerization. After immunochemical examination, the data demonstrated that the microtubules were arranged irregularly into dipolarity showing prometaphase-like states. Furthermore, 2-phenyl-4-quinolone induced the Mcl-1 cleavage, the phosphorylation of Bcl-2 and bcl-xL (12-h treatment), and the caspase activation including caspase-8, -2 and -3 (24-h treatment)The exposure of cells to 2-phenyl-4-quinolone caused Cdk1 activation by several observations, namely (i) elevation of cyclin B1 expression, (ii) dephosphorylation on inhibitory Tyr-15 of Cdk1, and (iii) dephosphorylation on Ser-216 of Cdc25c. Moreover, a long-term treatment (36 h) caused the release reaction and subsequent nuclear translocation. of AIF. In summary, it is suggested that 2-phenyl-4-quinolone displays anticancer effect through the dysregulation of mitotic spindles and induction of mitotic arrest. Furthermore, participation of cell-cycle regulators, Bcl-2 family of proteins, activation of caspases and release of AIF may mutually cross-regulate the apoptotic signaling cascades induced by 2-phenyl-4quinolone. (c) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available