4.8 Article

Facile Synthesis of Boronate-Decorated Polyethyleneimine-Grafted Hybrid Magnetic Nanoparticles for the Highly Selective Enrichment of Modified Nucleosides and Ribosylated Metabolites

Journal

ANALYTICAL CHEMISTRY
Volume 85, Issue 23, Pages 11585-11592

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac402979w

Keywords

-

Funding

  1. National Basic Research Program from the State Ministry of Science and Technology of China [2012CB720801, 2012CB518303]
  2. National Natural Science Foundation of China. [21021004]
  3. [21175132]
  4. [21275141]

Ask authors/readers for more resources

Ribosylated metabolites, especially modified nucleosides, have been extensively evaluated as cancer-related biomarkers. Boronate adsorbents are considered to be promising materials for extracting them from complex matrices. However, the enrichment of ribosylated metabolites in low abundance is still a challenge due to the limited capacity and selectivity of the existing boronate adsorbents. In this study, a novel type of magnetic nanoparticles named Fe3O4@SiO2@PEI-FPBA was synthesized by grafting polyethyleneimine (PEI) onto the surface of Fe3O4@SiO2 before modification by boronate groups. The high density of the amino groups on the PEI chains supplied a large number of binding sites for boronate groups. Thus, the adsorption capacity (1.34 +/- 0.024 mg/g) of the nanoparticles, which is 6- to 7-fold higher than that of analogous materials, was greatly improved. The unreacted secondary amines and tertiary amines of the PEI enhanced the aqueous solubility of the nanoparticles, which could efficiently reduce nonspecific adsorption. The nanoparticles were able to capture 1,2 cis-diol nucleosides from 1000-fold interferences. Moreover, the flexible chains of PEI were favorable for effective enrichment and quick equilibration (<2 min). Finally, 60 ribose conjugates were enriched from human urine using the nanoparticles. Among them, 43 were identified to be nucleosides and other ribosylated metabolites. Nine low abundance modified nucleosides were detected for the first time. In conclusion, Fe3O4@SiO2@PEI-FPBA is an attractive candidate material for the highly selective enrichment of 1,2-cis-diol compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available