4.8 Article

Poly(Thymine)-Templated Fluorescent Copper Nanoparticles for Ultrasensitive Label-Free Nuclease Assay and Its Inhibitors Screening

Journal

ANALYTICAL CHEMISTRY
Volume 85, Issue 24, Pages 12138-12143

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac403354c

Keywords

-

Funding

  1. Key Project of Natural Science Foundation of China [21175039, 21322509, 21190044]
  2. Research Fund for the Doctoral Program of Higher Education of China [20110161110016]
  3. Hunan Provincial Natural Science Foundation
  4. Hunan Provincial Science and Technology Plan of China [2012TT1003]

Ask authors/readers for more resources

Noble-metal fluorescent nanoparticles have attracted considerable interest on account of their excellent properties and potential applicable importance in many fields. Particularly, we recently found that poly(thymine) (poly T) could template the formation of fluorescent copper nanoparticles (CuNPs), offering admirable potential as novel functional biochemical probes. However, exploration of poly T-templated CuNPs for application is still at a very early stage. We report herein for the first example to develop a novel ultrasensitive label-free method for the nuclease (S1 nuclease as a model system) assay, and its inhibitors screening using the poly T-templated fluorescent CuNPs. In this assay, the signal reporter of poly T of 30 mer (T30) kept the original long state in the absence of nuclease, which could effectively template the formation of fluorescent CuNPs. In the presence of nuclease, poly T was digested to mono- or oligonucleotide fragments with decrease of fluorescence. The proposed method was low-cost and simple in its operation without requirement for complex labeling of probe DNA or sophisticated synthesis of the fluorescent compound. The assay process was very rapid with only 5 min for the formation of fluorescent CuNPs. The capabilities for target detection from complex fluids and screening of nuclease inhibitors were verified. A high sensitivity exhibited with a detectable minimum concentration of 5 X 10(-7) units mu L-1 S1 nuclease, which was about 1-4 orders of magnitude more sensitive than the developed approaches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available