4.8 Article

Iron Isotope Composition of Particles Produced by UV-Femtosecond Laser Ablation of Natural Oxides, Sulfides, and Carbonates

Journal

ANALYTICAL CHEMISTRY
Volume 85, Issue 24, Pages 11885-11892

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac402722t

Keywords

-

Funding

  1. NASA Astrobiology Institute
  2. Directorate For Geosciences
  3. Division Of Earth Sciences [1028462] Funding Source: National Science Foundation

Ask authors/readers for more resources

The need for femtosecond laser ablation (Is-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in Fe-56/Fe-54 ratios of +2 parts per thousand, +1.2 parts per thousand, and +0.8 parts per thousand with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenroder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available