4.8 Article

Quantitative Analysis of Oligosaccharides Derived from Sulfated Glycosaminoglycans by Nanodiamond-Based Affinity Purification and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

Journal

ANALYTICAL CHEMISTRY
Volume 85, Issue 9, Pages 4342-4349

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac3034097

Keywords

-

Funding

  1. National Science Council of Taiwan, Republic of China [NSC 101-2113-M-260-003-MY2]

Ask authors/readers for more resources

Degraded fragments of sulfated glycosaminoglycans (GAGs) are key reporters for profiling the burden of mucopolysaccharidosis (MPS) disease at baseline and during therapy. Here, we present a high-throughput assay, which combines microwave-assisted degradation, solid-phase affinity purification, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), for quantitative analysis of sulfated oligosaccharides in biological samples. First, sulfated oligosaccharides such as chondroitin-4-sulfate (CS) were efficiently isolated from highly diluted solutions or spiked artificial cerebrospinal fluid (aCSF) using polyarginine-coated nanodiamonds (PA-coated NDs) as affinity sorbents. Next, they were degraded to disaccharides through microwave assisted methanolysis or enzymatic digestion for subsequent MALDI-TOF MS analysis. The reaction times for GAG depolymerization were significantly reduced from a few hours to less than 7 min under the microwave irradiation. Deuterium-labeled internal standards were then mixed with the CS-derived disaccharides for quantitative analysis by MALDI-TOF MS using the N-(1-naphthyl) ethylenediamine dihydrochloride (NEDC) matrix. The new assay is facile, specific (with distinct chlorine isotope trait markers), sensitive (with a detection limit of similar to 70 pg), and potentially useful for clinical diagnosis of MPS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available