4.8 Article

Microdialysis-Coupled Enzymatic Microreactor for in Vivo Glucose Monitoring in Rats

Journal

ANALYTICAL CHEMISTRY
Volume 85, Issue 22, Pages 10949-10955

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac402414m

Keywords

-

Ask authors/readers for more resources

Continuous glucose monitoring (CGM) is an important aid for diabetic patients to optimize glycemic control and to prevent long-term complications. However, current CGM devices need further miniaturization and improved functional performance. We have coupled a previously described microfluidic chip with enzymatic microreactor (EMR) to a microdialysis probe and evaluated the performance of this system for monitoring subcutaneous glucose concentration in rats. Nanoliter volumes of microdialysis sample are efficiently reacted with continuously supplied glucose oxidase (GOx) solution in the EMR. The hydrogen peroxide produced is amperometrically detected at a (polypyrrole (PPy)-protected) thin-film Pt electrode. Subcutaneous glucose concentration was continuously monitored in anesthetized rats in response to intravenous injections of 20% glucose (w/v), 5 U/kg insulin, or saline as a control. In vitro evaluation showed a linear range of 2.1-20.6 mM and a sensitivity of 7.8 +/- 1.0 nA/mM (n = 6). The physical lag time between microdialysis and the analytical signal was approximately 18 min. The baseline concentration of blood glucose was 10.2 +/- 2.3 mM. After administering glucose to the rats, glucose levels increased by about 2 mM to 12.1 +/- 2.3 mM in blood and 11.9 +/- 1.5 mM in subcutaneous interstitial fluid (ISF). After insulin administration, glucose levels decreased by about 8 mM relative to baseline to 2.1 +/- 0.6 mM in blood and 2.1 +/- 0.9 mM in ISF. A microfluidic device with integrated chaotic mixer and EMR has been successfully combined with subcutaneous microdialysis to continuously monitor glucose in rats. This proof-of-principle demonstrates the feasibility of improved miniaturization in CGM based on microfluidics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available