4.6 Article

Ethylene induces zygote formation through an enhanced expression of zyg1 in Dictyostelium mucoroides

Journal

EXPERIMENTAL CELL RESEARCH
Volume 313, Issue 11, Pages 2493-2503

Publisher

ELSEVIER INC
DOI: 10.1016/j.yexcr.2007.04.012

Keywords

ethylene; ACC oxidase; Zyg1; signal transduction; 1-MCP; zygote; macrocyst RNAi; Dictyostelium

Ask authors/readers for more resources

We have previously demonstrated that a potent plant hormone, ethylene induces sexual development including zygote formation in Dictyostelium cells, and that a novel gene (zyg1) is also involved in zygote formation. Based on these findings, the present work was mainly designed to reveal (1) the precise relationship between the ethylene amount and zygote formation, and (2) the relation of in situ ethylene synthesis to zyq1 expression, using transformants that over- or under-produce ACC-oxidase (Dd-aco) involved in ethylene biosynthesis. ACO(OE) cells overexpressing Dd-aco gene overproduced ethylene and exhibited the augmented zygote formation. In contrast, ACO-RNAi cells, in which the expression of Dd-aco was suppressed by the RNAi method, showed a reduced level of ethylene production, thus resulting in inhibition of zygote formation. Importantly, the expression of zyq1 was affected by the amount of ethylene produced: Zyg1 expression was augmented in ACO(OE) cells, but was significantly suppressed in ACO-RNAi cells. In another experiment, we found that 1-methylcyclopropene (1-MCP), which is known to inhibit the function of ethylene by binding specifically to ethylene receptors, greatly suppresses zygote formation. These results indicate that ethylene is capable of inducing zygote formation through the expression of zyg1. (c) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available