4.8 Article

Electrochemical Generation of Hydroxyl Radicals for Examining Protein Structure

Journal

ANALYTICAL CHEMISTRY
Volume 85, Issue 13, Pages 6185-6189

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac400107c

Keywords

-

Funding

  1. University of Arizona

Ask authors/readers for more resources

The use of hydroxyl radicals to covalently label the solvent-exposed surface of proteins has been shown to be a powerful tool to examine the structure of proteins and intermolecular interfaces. Current methods to generate hydroxyl radicals for footprinting experiments rely on the laser photolysis of H2O2 or the synchrotron radiolysis of water, which adds significant costs and/or complexity to the experiments. In this work, we develop the electro-Fenton reaction as a means to generate hydroxyl radicals for structural footprinting mass spectrometry experiments to complement current laser and synchrotron-based methods, while reducing the costs and complexity of initiating such experiments. The use of an electrochemical flow cell also enables control of the timing and extent of the radical generation process, while reducing the complexity typically associated with radical footprinting experiments. Ubiquitin, a model protein, was labeled with electro-Fenton generated hydroxyl radicals and top down proteomics was used to verify oxidation sites on the protein surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available