4.7 Article Proceedings Paper

Anisotropic fluctuations of amino acids in protein structures: insights from X-ray crystallography and elastic network models

Journal

BIOINFORMATICS
Volume 23, Issue 13, Pages I175-I184

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btm186

Keywords

-

Funding

  1. NIGMS NIH HHS [R33 GM068400-01A2, R01 GM086238] Funding Source: Medline

Ask authors/readers for more resources

Motivation: A common practice in X-ray crystallographic structure refinement has been to model atomic displacements or thermal fluctuations as isotropic motions. Recent high-resolution data reveal, however, significant departures from isotropy, described by anisotropic displacement parameters (ADPs) modeled for individual atoms. Yet, ADPs are currently reported for a limited set of structures, only. Results: We present a comparative analysis of the experimentally reported ADPs and those theoretically predicted by the anisotropic network model (ANM) for a representative set of structures. The relative sizes of fluctuations along different directions are shown to agree well between experiments and theory, while the cross-correlations between the (x-, y- and z-) components of the fluctuations show considerable deviations. Secondary structure elements and protein cores exhibit more robust anisotropic characteristics compared to disordered or flexible regions. The deviations between experimental and theoretical data are comparable to those between sets of experimental ADPs reported for the same protein in different crystal forms. These results draw attention to the effects of crystal form and refinement procedure on experimental ADPs and highlight the potential utility of ANM calculations for consolidating experimental data or assessing ADPs in the absence of experimental data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available