4.8 Article

Massively Parallel Single-Molecule and Single-Cell Emulsion Reverse Transcription Polymerase Chain Reaction Using Agarose Droplet Microfluidics

Journal

ANALYTICAL CHEMISTRY
Volume 84, Issue 8, Pages 3599-3606

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac2033084

Keywords

-

Funding

  1. NSFC [21075104]
  2. National Basic Research Program of China [2010CB732402]
  3. Natural Science Foundation of Fujian Province for Distinguished Young Scholars [2010 J06004]
  4. Department of Business Innovation and Skills, U.K.

Ask authors/readers for more resources

A microfluidic device for performing single copy, emulsion Reverse Transcription Polymerase Chain Reaction (RT-PCR) within agarose droplets is presented. A two-aqueous-inlet emulsion droplet generator was designed and fabricated to produce highly uniform monodisperse picoliter agarose emulsion droplets with RT-PCR reagents in carrier oil. Template RNA or cells were delivered from one inlet with RT-PCR reagents/cell lysis buffer delivered separately from the other. Efficient RNA/cell encapsulation and RT-PCR at the single copy level was achieved in agarose-in-oil droplets, which, after amplification, can be solidified into agarose beads for further analysis. A simple and efficient method to graft primer to the polymer matrix using 5'-acrydite primer was developed to ensure highly efficient trapping of RT-PCR products in agarose. High-throughput single RNA molecule/cell RT-PCR was demonstrated in stochastically diluted solutions. Our results indicate that single-molecule RT-PCR can be efficiently carried out in agarose matrix. Single-cell RT-PCR was successfully performed which showed a clear difference in gene expression level of EpCAM, a cancer biomarker gene, at the single-cell level between different types of cancer cells. This work clearly demonstrates for the first time, single-copy RT-PCR in agarose droplets. We believe this will open up new possibilities for viral RNA detection and single-cell transcription analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available