4.8 Article

Characterization of Multifunctional Nanosystems Based on the Avidin-Nucleic Acid Interaction As Signal Enhancers in Immuno-Detection

Journal

ANALYTICAL CHEMISTRY
Volume 84, Issue 7, Pages 3433-3439

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac300276u

Keywords

-

Funding

  1. University of Padova - Progetto di Ateneo

Ask authors/readers for more resources

The Avidin-Nucleic-Acids-Nano-Assembly (ANANAS) is a kind of soft poly avidin nanoparticle originating from the high affinity interaction between avidin and the nucleic acids. In this work we investigated the possibility of transforming ANANAS cores into stoichiometrically controlled multifunctional nanoparticles through a one- pot procedure, and we measured in a quantitative way their ability to work as reagents for enhanced immunodiagnostic detection. Initially, we measured the ANANAS loading capability for biotinylated proteins of different nature. About 200 molecules of biotin-horseradish-peroxidase (40KDa b-HRP) and 60 molecules of biotin-immunoglobulin-G (150KDa b-IgG) could be accommodated onto each nanoparticle, showing that steric limitations dictate the number of loadable entities. Stoichiometrically controlled functional assemblies were generated by mixing core particles with subsaturating amounts of b-HRP and b-IgG. When applied as detection reagents in an Enzyme-Linked-ImmunoSorbed-Assay (ELISA), these assemblies were up to two-orders of magnitude more sensitive than commercial HRP-based reagents. Assemblies of different composition displayed different efficacy, indicating that the system functionality can be fine-tuned. Within-assay variability (CV%), measured to assess if the assembly procedure is reproducible, was within 10%. Stability experiments demonstrated that the functionalyzed assemblies are stable in solution for more than one week. In principle, any biotinylated function can be loaded onto the core particle, whose high loading capacity and tunability may open the way toward further application in biomedicine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available