4.6 Article

Expression of reductive dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2,3-dichlorophenol

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 73, Issue 14, Pages 4439-4445

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00215-07

Keywords

-

Ask authors/readers for more resources

Reductive dehalogenase (RD) gene transcript levels in Dehalococcoides ethenogenes strain 195 were investigated using reverse transcriptase quantitative PCR during growth and reductive dechlorination of tetrachloroethene (PCE), trichloroethene (TCE), or 2,3-dichlorophenol (2,3-DCP). Cells grown with PCE or TCE had high transcript levels (greater than that for rpoB) for tceA, which encodes the TCE RD, pceA, which encodes the PCE RD, and DET0162, which contains a predicted stop codon and is considered nonfunctional. In cells grown with 2,3-DCP, tceA mRNA was less than 1% of that for rpoB, indicating that its transcription was regulated. pceA and DET0162 were the only RD genes with high transcript levels in cells grown with 2,3-DCP. Proteomic analysis of PCE-grown cells detected both PceA and TceA with high peptide coverage but not DET0162, and analysis of 2,3-DCP-grown cells detected PceA with high coverage but not TceA, DET0162, or any other potential RD. Cells grown with PCE or 2,3-DCP were tested for the ability to dechlorinate PCE, TCE, or 2,3-DCP with H-2 as the electron donor. 2,3-DCP-grown cells were unable to dechlorinate TCE but dechlorinated PCE to TCE without a lag, and PCE-grown cells dechlorinated 2,3-DCP without a lag. These results show that 2,3-DCP-grown cells do not produce TceA and that DET0162 is transcribed but its translation product is not detectable in cells and are consistent with PceA's being bifunctional, also serving as the 2,3-DCP RD. Chlorophenols naturally occur in soils and are good candidates for the original substrates for PceA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available