4.8 Article

Oxidative stress induces the endoplasmic reticulum stress and facilitates inclusion formation in cultured cells

Journal

JOURNAL OF HEPATOLOGY
Volume 47, Issue 1, Pages 93-102

Publisher

ELSEVIER
DOI: 10.1016/j.jhep.2007.01.039

Keywords

aggresome; endoplasmic reticulum stress; inclusion; keratin; mallory body; oxidative stress; ubiquitin-proteasome system

Funding

  1. NIDDK NIH HHS [DK52951] Funding Source: Medline

Ask authors/readers for more resources

Background/Aims: The precise mechanism of formation and significance of Mallory bodies (MBs) are poorly understood. The endoplasmic reticulum (ER) is the organelle responsible for proper folding and elimination of unfolded proteins. Therefore, failure of this function increases defective proteins in the cell. Methods: We examined the effects of oxidative stress on induction of ER stress and keratin 8 and 18 (K8/18)-containing inclusion formation in cultured human hepatoma cells and hepatocytes by immunofluorescence and immunoblot analyses. Results: Generation of H2O2 was detected in glucose oxidase (GO)-treated cells by 2 ',7 '-dichlorodihydrofluorescein diacetate and co-treatment with GO and acetyl-leucyl-leucyl-norleucinal (ALLN), a proteasome inhibitor, induced formation of extensive keratin inclusions that were inhibited by pre-treatment with N-acetyl-cysteine. These inclusions shared similar features with MBs by immunofluorescence analysis. Electron microscopy showed that these structures appeared near the nuclei, surrounded by filamentous structures. GO and ALLN upregulated the expression of ER stress markers, however, 4-phenylbutyrate, a chemical chaperone, reduced formation of inclusions and expression of the ER stress markers. Conclusions: The oxidative stress coupled with limited inhibition of the proteasome induces dysfunction of the ER and results in inclusion formation in cultured cells. This suggests that ER stress plays a role in MB formation in liver disease. (c) 2007 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available