4.5 Article

Electroosmotic flow in vapor deposited silicon dioxide and nitride microchannels

Journal

BIOMICROFLUIDICS
Volume 1, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2752376

Keywords

-

Ask authors/readers for more resources

Electroosmotic flow was studied in thin film microchannels with silicon dioxide and silicon nitride sidewalls formed using plasma-enhanced chemical vapor deposition (PECVD). A sacrificial etching process was employed for channel fabrication allowing for cross-sections with heights of 3 mu m, ranging from 2 mu m to 50 mu m in width. Flow rates were measured for single channels and multichannel electroosmotic pump structures for pH levels ranging from 2.6 to 8.3, and zeta potentials were calculated for both silicon dioxide and silicon nitride surfaces. Flow rates as high as 0.086 mu L/min were measured for nitride multichannel pumps at applied electric fields of 300 V/mm. The surface characteristics of PECVD nitride were analyzed and compared to more well-known oxide surfaces to determine the density of amine sites compared to silanol sites. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available