4.6 Article

Induction of MxA gene expression by influenza A virus requires type I or type III interferon signaling

Journal

JOURNAL OF VIROLOGY
Volume 81, Issue 14, Pages 7776-7785

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.00546-06

Keywords

-

Categories

Ask authors/readers for more resources

The human MxA gene belongs to the class of interferon (IFN) -stimulated genes (ISGs) involved in antiviral resistance against influenza viruses. Here, we studied the requirements for MxA induction by influenza A virus infection. MxA is transcriptionally upregulated by type I (alpha and beta) and type III (lambda) IFNs. Therefore, MxA is widely used in gene expression studies as a reliable marker for IFN bioactivity. It is not known, however, whether viruses can directly activate MxA expression in the absence of secreted IFN. By using an NS1-deficient influenza A virus and human cells with defects in IFN production or the STAT1 gene, we studied the induction profile of MxA by real-time reverse transcriptase PCR. The NS1-deficient virus is known to be a strong activator of the IFN system because NS1 acts as a viral IFN-antagonistic protein. Nevertheless, MxA gene expression was not inducible by this virus upon infection of IFN nonproducer cells and STAT1-null cells. Likewise, neither IFN-alpha nor IFN-X had a sizeable effect on the STAT1-null cells, indicating that MxA expression requires STAT1 signaling and cannot be triggered directly by virus infection. In contrast, the expression of the IFN-stimulated gene ISG56 was induced by influenza virus in these cells, confirming that ISG56 differs from MxA in being directly inducible by viral triggers in an IFN-independent way. In summary, our study reveals that MxA is a unique marker for the detection of type I and type III IFN activity during virus infections and IFN therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available