4.8 Article

Functionalized Graphene Oxide as a Nanocarrier in a Multienzyme Labeling Amplification Strategy for Ultrasensitive Electrochemical Immunoassay of Phosphorylated p53 (S392)

Journal

ANALYTICAL CHEMISTRY
Volume 83, Issue 3, Pages 746-752

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac101715s

Keywords

-

Funding

  1. National Institutes of Health CounterACT program through the National Institute of Neurological Disorders and Stroke [NS058161-01]
  2. PNNL Laboratory Directed Research and Development program
  3. U.S. Department of Energy (DOE) by Battelle [DE-AC05-76RL01830]
  4. DOE's office of Biological and Environmental Research located at PNNL
  5. National Natural Science Foundation of China [21075047]
  6. Program for Chenguang Young Scientist for Wuhan [200950431184]

Ask authors/readers for more resources

P53 phosphorylation plays an important role in many biological processes and might be used as a potential biomarker in clinical diagnoses. We report a new electrochemical immunosensor for ultrasensitive detection of phosphorylated p53 at Ser392 (phospho-p53(392)) based on graphene oxide (GO) as a nanocarrier in a multienzyme amplification strategy. Greatly enhanced sensitivity was achieved by using the bioconjugates featuring horseradish peroxidase (HRP) and p53(392) signal antibody (p53(392)Ab(2)) linked to functionalized GO (HRP-p53(392)Ab(2)-GO) at a high ratio of HRP/p53(392)Ab(2). After a sandwich immunoreaction, the HRP-p53(392)Ab(2)-GO captured onto the electrode surface produced an amplified electrocatalytic response by the reduction of enzymatically oxidized thionine in the presence of hydrogen peroxide. The increase of response current was proportional to the phospho-p53(392) concentration in the range of 0.02-2 nM with the detection limit of 0.01 nM, which was 10-fold lower than that of the traditional sandwich electrochemical measurement for p53392. The amplified immunoassay developed in this work shows acceptable stability and reproducibility, and the assay results for phospho-p53392 spiked in human plasma also show good recovery (92-103.8%). This simple and low-cost immunosensor shows great promise for detection of other phosphorylated proteins and clinical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available