4.8 Article

Enhanced Lysozyme Imprinting Over Nanoparticles Functionalized with Carboxyl Groups for Noncovalent Template Sorption

Journal

ANALYTICAL CHEMISTRY
Volume 83, Issue 4, Pages 1431-1436

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac1029924

Keywords

-

Funding

  1. National Natural Science Foundation of China [21074061, 20574038]
  2. Natural Science Foundation of Tianjin [09JCYBJC02900]

Ask authors/readers for more resources

Surface molecular imprinting, in particular over nanosized support materials, is very suitable for a template of bulky structure like protein. Inspired by the surface template immobilization method reported previously, we herein demonstrate an alternative strategy for enhancing specific recognition of core shell protein-imprinted nanoparticles through prefunctionalizing the cores with noncovalent template sorption groups. For proof of this concept, silica nanoparticles chosen as the core materials were modified consecutively with 3-aminopropyltrimethoxysilane and maleic anhydride to introduce polymerizable double bonds and terminal carboxyl groups, hence capable of physically adsorbing the print protein. With lysozyme as a template, thin protein-imprinted shells were fabricated according to our newly developed approach for surface protein imprinting over nanoparticles. The rebinding experiments confirmed that the introduction of the carboxyl groups could remarkably improve the imprinting effect in relation to a significantly increased imprinting factor and specific rebinding capacity. Moreover, in contrast to the harsh template removal conditions required for the covalent template coupling approach, the template removal during the imprinted particle synthesis as well as desorption after rebinding could be mildly achieved via washing with salt solution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available