4.8 Article

Infrared Hollow Waveguide Sensors for Simultaneous Gas Phase Detection of Benzene, Toluene, and Xylenes in Field Environments

Journal

ANALYTICAL CHEMISTRY
Volume 83, Issue 16, Pages 6141-6147

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac1031034

Keywords

-

Funding

  1. ExxonMobil Research and Engineering Company (EMRE)
  2. ExxonMobil Biomedical Sciences, Inc.

Ask authors/readers for more resources

Simultaneous and molecularly selective parts-per-billion detection of benzene, toluene, and xylenes (BTX) using a thermal desorption (TD)-FTIR hollow waveguide (HWG) trace gas sensor is demonstrated here for the first time combining laboratory calibration with real-world sample analysis in field. A calibration range of 100-1000 ppb analyte/N-2 was developed and applied for predicting the concentration of blinded environmental air samples within the same concentration range, and demonstrate close agreement with the validation method used here, GC-FID. The analyte concentration prediction capability of the TD-FTIR-HWG trace gas sensor also compares well with the industrial standard and other experimental techniques including GC-PID, ultrafast GC-FID, and GC-DMS, which were simultaneously operated in the field. With the advent of a quantum cascade laser with emission frequencies specifically tailored to efficiently overlap benzene absorption as the most relevant analyte, the overall sensor footprint could be considerably reduced to ultimately yield hand-held trace gas sensors facilitating direct and real-time detection of BTX in air down to low ppb levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available