4.6 Article

Technical note: A physical phantom for assessment of accuracy of deformable alignment algorithms

Journal

MEDICAL PHYSICS
Volume 34, Issue 7, Pages 2785-2788

Publisher

AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS
DOI: 10.1118/1.2739812

Keywords

deformable alignment; IGRT; image registration

Funding

  1. NCI NIH HHS [P01-CA59827] Funding Source: Medline

Ask authors/readers for more resources

The purpose of this study was to investigate the feasibility of a simple deformable phantom as a QA tool for testing and validation of deformable image registration algorithms. A diagnostic thoracic imaging phantom with a deformable foam insert was used in this study. Small plastic markers were distributed through the foam to create a lattice with a measurable deformation as the ground truth data for all comparisons. The foam was compressed in the superior-inferior direction using a one-dimensional drive stage pushing a flat diaphragm to create deformations similar to those from inhale and exhale states. Images were acquired at different compressions of the foam and the location of every marker was manually identified on each image volume to establish a known deformation field with a known accuracy. The markers were removed digitally from corresponding images prior to registration. Different image registration algorithms were tested using this method. Repeat measurement of marker positions showed an accuracy of better than 1 mm in identification of the reference marks. Testing the method on several image registration algorithms showed that the system is capable of evaluating errors quantitatively. This phantom is able to quantitatively assess the accuracy of deformable image registration, using a measure of accuracy that is independent of the signals that drive the deformation parameters. (C) 2007 American Association of Physicists in Medicine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available