4.5 Article

Adhesion and growth of vascular smooth muscle cells in cultures on bioactive RGD peptide-carrying polylactides

Journal

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE
Volume 18, Issue 7, Pages 1317-1323

Publisher

SPRINGER
DOI: 10.1007/s10856-006-0074-1

Keywords

-

Ask authors/readers for more resources

The surface of poly(L-lactide) (PLLA) films deposited on glass coverslips was modified with poly(DL-lactide) (PDLLA), or 1:4 mixtures of PDLLA and PDLLA-b-PEO block copolymers, in which either none, 5% or 20% of the copolymer molecules carried a synthetic extracellular matrix-derived ligand for integrin adhesion receptors, the GRGDSG oligopeptide, attached to the end of the PEO chain. The materials, perspective for vascular tissue engineering, were seeded with rat aortic smooth muscle cells (11,000 cells/cm(2)) and the adhesion, spreading, DNA synthesis and proliferation of these cells was followed on inert and bioactive surfaces. In 24-h-old cultures in serum-supplemented media, the number of cells adhering to the PDLLA-b-PEO copolymer was almost eight times lower than that on the control PDLLA surface. On the surfaces containing 5% and 20% GRGDSG-PEO-b-PDLLA copolymer, the number of cells increased 6- and 3-fold respectively, compared to the PDLLA-b-PEO copolymer alone. On PDLLA-b-PEO copolymer alone, the cells were typically round and non-spread, whereas on GRGDSG-modified surfaces the cell spreading areas approached those found on PDLLA, reaching values of 991 mu m(2) and 611 mu m(2) for 5% and 20% GRGDSG respectively, compared to 958 mu m(2) for PDLLA. The cells on GRGDSG-grafted copolymers were able to form vinculin-containing focal adhesion plaques, to synthesize DNA and even proliferate in a serum-free medium, which indicates specific binding to the GRGDSG sequences through their adhesion receptors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available