4.8 Article

Forster Resonance Energy Transfer-Based Biosensors for Multiparameter Ratiometric Imaging of Ca2+ Dynamics and Caspase-3 Activity in Single Cells

Journal

ANALYTICAL CHEMISTRY
Volume 83, Issue 24, Pages 9687-9693

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac202595g

Keywords

-

Funding

  1. CIHR
  2. NSERC

Ask authors/readers for more resources

As one of the principal cytoplasmic second messengers, the calcium ion (Ca2+) is central to a variety of intracellular signal transduction pathways. Accordingly, there is a sustained interest in methods for spatially- and temporally resolved imaging of the concentration of Ca2+ in live cells using noninvasive methods such as genetically encoded biosensors based on Forster resonance energy transfer (FRET) between fluorescent proteins (FPs). In recent years, protein-engineering efforts have provided the research community with FRET-based Ca2+ biosensors that are dramatically improved in terms of enhanced emission ratio change and optimized Ca2+ affinity for various applications. We now report the development and systematic optimization of a pair of spectrally distinct FRET-based biosensors that enable the simultaneous imaging of Ca2+ in two compartments of a single cell without substantial spectral crosstalk between emission channels. Furthermore, we demonstrate that these new biosensors can be used in conjunction with previously reported caspase-3 substrates based on the same set of FRET pairs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available