4.5 Article Proceedings Paper

Fabrication and properties of ZnO:Cu and ZnO:Ag thin films

Journal

SUPERLATTICES AND MICROSTRUCTURES
Volume 42, Issue 1-6, Pages 94-98

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.spmi.2007.04.016

Keywords

thin films; ZnO : Cu; ZnO : Ag; closed space sublimation; pulse photo-assisted rapid thermal annealing; photoluminescence

Ask authors/readers for more resources

Thin films of ZnS and ZnO:Cu were grown by an original metal-organic chemical vapour deposition (MOCVD) method under atmospheric pressure onto glass substrates. Pulse photo-assisted rapid thermal annealing of ZnO:Cu films in ambient air and at the temperature of 700-800 degrees C was used instead of the common long-duration annealing in a vacuum furnace. ZnO:Ag thin films were prepared by oxidation and Ag doping of ZnS films. At first a closed space sublimation technique was used for Ag doping of ZnO films. The oxidation and Ag doping were carried out by a new non-vacuum method at a temperature > 500 degrees C. Crystal quality and optical properties were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL). It was found that the doped films have a higher degree of crystallinity than undoped films. The spectra of as-deposited ZnO:Cu films contained the bands typical for copper, i.e. the green band and the yellow band. After pulse annealing at high temperature the 410 and 435 nm photoluminescent peaks were observed. This allows changing of the emission colour from blue to white. Flat-top ZnO:Ag films were obtained with the surface roughness of 7 nm. These samples show a strong ultraviolet (UV) emission at room temperature. The 385 nm photolunninescent peak obtained is assigned to the exciton-exciton emission. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available