4.8 Article

Surface-Enhanced Raman Scattering Detection of DNA Derived from the West Nile Virus Genome Using Magnetic Capture of Raman-Active Gold Nanoparticles

Journal

ANALYTICAL CHEMISTRY
Volume 83, Issue 1, Pages 254-260

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac1023843

Keywords

-

Funding

  1. Rocky Mountain Regional Center for Excellence (NIH) [AI-065357-03]
  2. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [U54AI065357] Funding Source: NIH RePORTER

Ask authors/readers for more resources

A model paramagnetic nanoparticle (MNP) assay is demonstrated for surface-enhanced Raman scattering (SERS) detection of DNA oligonucleotides derived from the West Nile virus (WNV) genome. Detection is based on the capture of WNV target sequences by hybridization with complementary oligonucleotide probes covalently linked to fabricated MNPs and Raman reporter tag-conjugated gold nanoparticles (GNPs) and the subsequent removal of GNP-WNV target sequence-MNP hybridization complexes from solution by an externally applied magnetic source. Laser excitation of the pelleted material provided a signature SERS spectrum which is diagnostic for the reporter, 5,5'-dithiobis(succinimidy-2-nitrobenzoate) (DSNB), and restricted to hybridization reactions containing WNV target sequences. Hybridizations containing dilutions of the target oligonucleotide were characterized by a reduction in the intensification of the spectral peaks accorded to the SERS signaling of DSNB, and the limit of detection for target sequence in buffer was 10 pM. Due to the short hybridization times required to conduct the assay and ease with which reproducible Raman spectra can be acquired, the assay is amenable to adaptation within a portable, user-friendly Raman detection platform for nucleic acids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available