4.7 Article

Soil restoration in semiarid Patagonia: Chemical and biological response to different compost quality

Journal

SOIL BIOLOGY & BIOCHEMISTRY
Volume 39, Issue 7, Pages 1580-1588

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2007.01.008

Keywords

biosolids compost; municipal composts; soil organic C; potential net N mineralization; potential microbial C respiration; soil moisture

Categories

Ask authors/readers for more resources

Restoration of soils burned by a wildfire using composted amendments of different origin (biosolids and municipal organic wastes) and final particle size (screened and unscreened) was studied after 6 and 12 months of application in a field trial in semiarid NW Patagonia. Composts were applied at 40 Mg ha(-1). A fertilized treatment with soluble N (100 kg ha(-1)) and P (35 kg ha(-1)), and a non-treated control were also included. As indicators of soil response, chemical (electrical conductivity, pH, organic C, total N, extractable P), biological (potential microbial respiration, potential net N mineralization, N retained in microbial biomass) and physical (temperature and soil moisture) properties were evaluated. Plant soil cover was also estimated. Soil chemical and biological properties showed a high response to organic amendment addition, more evident after the wet season (12 months of application). Soil organic C, total N and extractable P increased significantly with biosolids composts (C-13), and soil pH with municipal composts (MC). Potential microbial C respiration and net N mineralization were similar for both MC and BC, and significantly higher than in the control and the inorganic fertilized treatment; when calculated on C or N basis the highest values corresponded to MC. Results imply that in terms of organic C accretion, BC were more effective than MC due to higher amounts of total and recalcitrant C. Screened and unscreened composts did not differ significantly in their effects on soil properties. The increase of organic C with BC did not contribute to increase soil moisture, which was even higher in control plots after the wet season; higher plant cover and water consumption in amended plots could also explain this pattern. Inorganic fertilization enhanced higher plant cover than organic amendments, but did not contribute to soil restoration. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available