4.5 Article

Sensitive biosensor array using surface plasmon resonance on metallic nanoslits

Journal

JOURNAL OF BIOMEDICAL OPTICS
Volume 12, Issue 4, Pages -

Publisher

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.2772296

Keywords

sensors; biomedical optics; detector arrays

Ask authors/readers for more resources

Chip-based biosensor arrays for label-free and high-throughput detection were fabricated and tested. The sensor array was composed of a 150-nm-thick, 50-nm-gap, and 600-nm-period gold nanoslits. Each array size was 100 mu m x 100 mu m. A transverse-magnetic polarized wave in these metallic nanostructures generated resonant surface plasmons at a wavelength of about 800 nm in a water environment. Using the resonant wavelength shift in the nanoslit array, we achieved detection sensitivity up to 668 nm per refractive index unit, about 1.7 times larger than that reported on an array of nanoholes. An antigen-antibody interaction experiment in an aqueous environment verified the sensitivity in a surface binding event. (C) 2007 Society of Photo-Optical Instrumentation Engineers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available