4.5 Article

Involvement of CD147 in regulation of multidrug resistance to P-gp substrate drugs and in vitro invasion in breast cancer cells

Journal

CANCER SCIENCE
Volume 98, Issue 7, Pages 1064-1069

Publisher

WILEY
DOI: 10.1111/j.1349-7006.2007.00487.x

Keywords

-

Categories

Funding

  1. NCI NIH HHS [CA 66077, CA109371] Funding Source: Medline

Ask authors/readers for more resources

Multidrug resistant (MDR) cancer cells overexpressing P-glycoprotein (P-gp) display variations in invasive and metastatic behavior. We aimed to clarify the mechanism(s) underlying this observation and transfected vectors carrying CD147, a glycoprotein enriched on the surface of tumor cells that stimulates the production of matrix metalloproteinases (MMPs), and specific shCD147 into MCF7 and MCF7/Adr cells, respectively. Using quantitative real-time polymerase chain reaction and Western blot, we found that overexpression of CD147 in MCF7 cells up-regulated MDR1, MMP2, and MMP9 on both transcription and expression levels, which promoted tumor cells metastasis and conferred them multidrug resistance to P-gp substrate drugs, as determined by in vitro invasion assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. On the other hand, silencing of CD147 in MCF7/Adr cells led to the opposite effect. Moreover, Erk1/2 in CD147-overexpressing clones were observed to be highly activate and after treatment with U0126, an Erk1/2-specific inhibitor, the expression of MDR1, MMP2 and MMP9 were decreased significantly. Thus, CD147 may assume a dual role, since it had intrinsic stimulative effects on tumor invasion in vitro as well as increasing resistance to P-gp substrate drugs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available