4.8 Article

Quantitative Fluorescence Microscopy To Determine Molecular Occupancy of Phospholipid Vesicles

Journal

ANALYTICAL CHEMISTRY
Volume 83, Issue 13, Pages 5128-5136

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac200129n

Keywords

-

Funding

  1. National Science Foundation [CHE-0957242]
  2. U.S. Department of Energy
  3. Division Of Chemistry
  4. Direct For Mathematical & Physical Scien [0957242] Funding Source: National Science Foundation

Ask authors/readers for more resources

Encapsulation of molecules in phospholipid vesicles provides unique opportunities to study chemical reactions in small volumes as well as the behavior of individual proteins, enzymes, and ribozymes in a confined region without requiring a tether to immobilize the molecule to a surface. These experiments generally depend on generating a predictable loading of vesicles with small numbers of target molecules and thus raise a significant measurement challenge, namely, to quantify molecular occupancy of vesicles at the single-molecule level. In this work, we describe an imaging experiment to measure the time-dependent fluorescence from individual dye molecules encapsulated in similar to 130 nm vesicles that are adhered to a glass surface. For determining a fit of the molecular occupancy data to a Poisson model, it is critical to count empty vesicles in the population since these dominate the sample when the mean occupancy is small, lambda <= similar to 1. Counting empty vesicles was accomplished by subsequently labeling all the vesicles with a lipophilic dye and reimaging the sample. By counting both the empty vesicles and those containing fluors, and quantifying the number of fluors present, we demonstrate a self-consistent Poisson distribution of molecular occupancy for well-solvated molecules, as well as anomalies due to aggregation of dye, which can arise even at very low solution concentrations. By observation of many vesicles in parallel in an image, this approach provides quantitative information about the distribution of molecular occupancy in a population of vesicles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available