4.4 Article Proceedings Paper

Diamond and diamond-like carbon MEMS

Journal

JOURNAL OF MICROMECHANICS AND MICROENGINEERING
Volume 17, Issue 7, Pages S147-S163

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0960-1317/17/7/S12

Keywords

-

Ask authors/readers for more resources

Diamond and diamond-like carbon (DLC) thin films possess a number of unique and attractive material properties that are unattainable from Si and other materials. These include high values of Young's modulus, hardness, tensile strength and high thermal conductivity, low thermal expansion coefficient combined with low coefficients of friction and good wear resistance. As a consequence, they are finding increasing applications in micro-electro-mechanical systems (MEMS). This paper reviews these distinctive material properties from an engineering design point of view and highlights the applications of diamond and DLC materials in various MEMS devices. Applications of diamond and DLC films in MEMS are in two categories: surface coatings and structural materials. Thin diamond and DLC layers have been used as coatings mainly to improve the wear and friction of micro- components and to reduce stiction between microstructures and their substrates. The high values of the elastic modulus of diamond and DLC have been exploited in the design of high frequency resonators and comb-drives for communication and sensing applications. Chemically modified surfaces and structures of diamond and DLC films have both been utilized as sensor materials for sensing traces of gases, to detect bio-molecules for biological research and disease diagnosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available