4.8 Article

Single-, Few-, and Multilayer Graphene Not Exhibiting Significant Advantages over Graphite Microparticles in Electroanalysis

Journal

ANALYTICAL CHEMISTRY
Volume 82, Issue 19, Pages 8367-8370

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac101996m

Keywords

-

Ask authors/readers for more resources

This report compares the electroanalytical performances of single- (G-SL), few- (G-FL), and multilayer graphene (G-ML), graphite microparticles, and edge-plane pyrolytic graphite electrodes in terms of sensitivity, linearity, and repeatability. We show that in the case of differential pulse voltammetric (DPV) detection of ascorbic acid, the sensitivity of a G-SL electrode is about 30% greater than that of G-ML and about 40% greater than graphite microparticles. However, in the case of DPV determination of uric acid, sensitivity is practically the same for all (G-SL, G-FL, and G-ML) and, importantly, the graphite microparticles do provide higher sensitivity than graphenes do for this analyte. Graphenes also do not provide a significant advantage in terms of repeatability. We pose the question of whether the efforts leading to the bulk method of producing single-layer graphene are justified for electroanalytical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available