4.8 Article

Label-Free Colorimetric Assay for Methyltransferase Activity Based on a Novel Methylation-Responsive DNAzyme Strategy

Journal

ANALYTICAL CHEMISTRY
Volume 82, Issue 5, Pages 1935-1941

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac902670c

Keywords

-

Funding

  1. National Natural Science Foundation of China [20805013, 20975032, 20975033, J0830415]
  2. Hunan Provincial Natural Science Foundation of China [09JJ4006]

Ask authors/readers for more resources

DNA methylation catalyzed by methyltransferase (MTase) is a significant epigenetic process for modulating gene expression. Traditional methods to study MTase activity require a laborious and costly DNA labeling process. In this article, we report a simple, colorimetric, and label-free methylation-responsive DNAzyme (MR-DNAzyme) strategy for MTase activity analysis. This new strategy relies on horseradish peroxidase (HRP) mimicking DNAzyme and the methylation-responsive sequence (MRS) of DNA which can be methylated and cleaved by the MTase/endonuclease coupling reaction. Methylation-induced scission of MRS would activate the DNAzyme that can catalyze the generation of a color signal for the amplified detection of methylation events. Taking Dam MTase and DpnI endonuclease as examples, we have developed two colorimetric methods based on the MR-DNAzyme strategy. The first method is to utilize an engineered hairpin-DNAzyme hybrid probe for facile turn-on detection of Dam MTase activity, with a wide linear range (6-100 U/mL) and it low detection limit (6 U/mL). Furthermore, this method could be easily expanded to profile the activity and inhibition of restriction endonuclease. The second method involves a methylation-triggered DNAzyme-based DNA machine, which achieves the ultrahigh sensitive detection of Dam MTase activity (detection limit = 0.25 U/mL) by a two-step signal amplification cascade.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available