4.3 Article

Cochlear expression of a dominant-negative GJB2R75W construct delivered through the round window membrane in mice

Journal

NEUROSCIENCE RESEARCH
Volume 58, Issue 3, Pages 250-254

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.neures.2007.03.006

Keywords

round window membrane; GJB2(R75w); dominant negative effect; DOTAP; immunohistochemistry; auditory brainstem response

Categories

Funding

  1. NIDCD NIH HHS [DC03544] Funding Source: Medline

Ask authors/readers for more resources

Development of a gene-delivery method to the inner ear is an essential step for studies of hearing function and gene therapy. Application of liposomes or adenoviral vectors onto the intact round window membrane (RWM) offers the possibility of atraumatic exogenous gene transfer. GJB2 encodes the gap junction protein Connexin26, which plays a crucial role in potassium recycling in the inner ear. The R75W allele of GJB is a well-characterized mutation that causes deafness at the DFNA3 through a dominant-negative mechanism of action. In this study, a plasmid vector, pGJB2(R75W)-eGFP, was lipocomplexed with N-[1-(2,3-Dioleoloxy)propyl]N,N,N-trimethylammonium methylsulfate: cholesterol and applied onto mouse RWM. At 3 days (3 d) post-treatment, immunohistochemistry demonstrated GJB2(R75W)-eGFP transgene expression in the cochlea in: inner and outer pillar cells, outer hair cells, Claudius cells and, in the spiral limbus and ligament. Significant hearing loss was detected by auditory brainstem response testing after 1, 2 and 3 d post-treatment; hearing levels returned to control levels at 5 d post-treatment. These data confirm that GJB2(R75W) induces functional impairment in the mature cochlea through a dominant negative effect, and importantly, that RWM application of exogenous genes is a feasible method to test their impact on hearing. (C) 2007 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available