4.8 Article

Graphene as a Novel Matrix for the Analysis of Small Molecules by MALDI-TOF MS

Journal

ANALYTICAL CHEMISTRY
Volume 82, Issue 14, Pages 6208-6214

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac101022m

Keywords

-

Funding

  1. National Institutes of Health [R01 CA 116522]
  2. National Natural Science Foundation of China [20975060]
  3. National Basic Research Program of China [2007CB310500]

Ask authors/readers for more resources

Graphene was utilized for the first time as a matrix for the analysis of low molecular weight compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Polar compounds including amino acids, polyamines, anticancer drugs, and nucleosides could be successfully analyzed. Additionally, nonpolar compounds including steroids could be detected with high resolution and sensitivity. Compared with a conventional matrix, graphene exhibited a high desorption/ionization efficiency for nonpolar compounds. The graphene matrix functions as a substrate to trap analytes, and it transfers energy to the analytes upon laser irradiation, which allows for the analytes to be readily desorbed/ionized and interference of intrinsic matrix ions to be eliminated. The use of graphene as a matrix avoided the fragmentation of analytes and provided good reproducibility and a high salt tolerance, underscoring the potential application of graphene as a matrix for MALDI MS analysis of practical samples in complex sample matrixes. We also demonstrated that the use of graphene as an adsorbent for the solid-phase extraction of squalene could improve greatly the detection limit. This work not only opens a new field for applications of graphene, but also offers a new technique for high-speed analysis of low molecular weight compounds in areas such as metabolism research and natural product characterization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available