4.8 Article

Spatial-Resolution Limits in Mass Spectrometry Imaging of Supported Lipid Bilayers and Individual Lipid Vesicles

Journal

ANALYTICAL CHEMISTRY
Volume 82, Issue 6, Pages 2426-2433

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac902744u

Keywords

-

Funding

  1. EC FP6 [005045]
  2. Swedish Governmental Agency for Innovation Systems (VINNOVA)
  3. SSF
  4. Swedish Research Council [2005-3140]

Ask authors/readers for more resources

The capabilities of time-of-flight secondary ion mass spectrometry (TOF-SIMS) with regards to limits in lateral resolution for biological samples are examined using supported lipid bilayers and individual lipid vesicles, both being among the most commonly used cell membrane mimics. Using supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers confined to a SiO2 substrate by a chemically modified gold surface, the edge of the lipid bilayer was analyzed by imaging TOF-SIMS to assess the lateral resolution. The results using 80 keV Bi-3(2+) primary ions show that, under optimized conditions, mass spectrometry imaging of specific unlabeled lipid fragments is possible with sub-100 nm lateral resolution. Comparison of the secondary ion yields for the phosphocholine ion (m/z 184) from a POPC bilayer using C-60(+) or Bi-3(+) primary ions showed similar results, indicating an advantage of Bi-3(+) primary ions for high-resolution imaging of lipid membranes, due to their better demonstrated focusing capability. Moreover, using 300 nm vesicles of different lipid composition, the capability to detect and chemically identify individual submicrometer lipid vesicles at separations down to similar to 1 mu m is demonstrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available