4.8 Article

Diagnostic Detection of Human Lung Cancer-Associated Antigen Using a Gold Nanoparticle-Based Electrochemical Immunosensor

Journal

ANALYTICAL CHEMISTRY
Volume 82, Issue 14, Pages 5944-5950

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac1001959

Keywords

-

Funding

  1. Taiwan National Science Council [98-2627-B-007-001, 98-2113-M-007-013-MY3]

Ask authors/readers for more resources

The development of rapid and sensitive methods for the detection of immunogenic tumor-associated antigen is important not only for understanding their roles in cancer immunology but also for the development of clinical diagnostics. a-Enolase (ENO1), a p48 molecule, is widely distributed in a variety of tissues, whereas gamma-enolase (ENO2) and beta-enolase (ENO3) are found exclusively in neuron/neuroendocrine and muscle tissues, respectively. Because ENO1 has been correlated with small cell lung cancer, nonsmall cell lung cancer, and head and neck cancer, it can be used as a potential diagnostic marker for lung cancer. In this study, we developed a simple, yet novel and sensitive, electrochemical sandwich immunosensor for the detection of ENO1; it operates through physisorption of anti-ENO1 monoclonal antibody on polyethylene glycol-modified disposable screen-printed electrode as the detection platform, with polyclonal secondary anti-ENO1-tagged, gold nanoparticle (AuNP) congregates as electrochemical signal probes. The immunorecognition of the sample ENO1 by the congregated AuNP@antibody occurred on the surface of the electrodes; the electrochemical signal from the bound AuNP congregates was obtained after oxidizing them in 0.1 M HCl at 1.2 V for 120 s, followed by the reduction of AuCl4- in square wave voltammetry (SWV) mode. The resulting sigmoidally shaped dose response curves possessed a linear dynamic working range from 10(-8) to 10(-12) g/mL. This AuNP congregate-based assay provides an amplification approach for detecting ENO1 at trace levels, leading to a detection limit as low as 11.9 fg (equivalent to 5 mu L of a 2.38 pg/mL solution).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available