4.7 Article

Synthesis and in vitro hydroxyapatite binding of peptides conjugated to calcium-binding moieties

Journal

BIOMACROMOLECULES
Volume 8, Issue 7, Pages 2237-2243

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm070121s

Keywords

-

Funding

  1. NIDCR NIH HHS [R01 DE15164] Funding Source: Medline

Ask authors/readers for more resources

To confer bone-binding properties to proteins and other biological agents that lack specific targeting capacity, model peptide-based molecules were synthesized containing poly(aspartic acid), poly(glutamic acid), or a bisphosphonate (pamidronate). These motifs have well-documented affinities to hydroxyapatite, a property desirable for the targeting of molecules to bone for drug delivery and tissue engineering applications. Model peptides of increasing molecular mass (5-33 amino acids) were directly conjugated to eight aspartic acids (Asp(8)), eight glutamic acids (Glu(8)), or pamidronate, purified by high-performance liquid chromatography, and characterized by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectroscopy. The modified peptides were incubated with hydroxyapatite in phosphate-buffered saline at physiological conditions over 24 h. This study revealed a significant amount (> 90%) of conjugated peptides adsorbed to the hydroxyapatite as compared to unmodified peptides (< 5%). It was found that while there were significant differences between the different hydroxyapatite-binding and control groups for all time points, the size of the peptide had no statistical effect on peptide-hydroxyapatite binding. These results demonstrate that bisphosphonate and oligopeptide conjugates hold great promise for the development of new bioactive molecules for bone-specific applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available