4.4 Article

Calcium indicator loading of neurons using single-cell electroporation

Journal

PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY
Volume 454, Issue 4, Pages 675-688

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00424-007-0234-2

Keywords

two-photon microscopy; neocortex; neural network; dendrite; synapse

Categories

Ask authors/readers for more resources

Studies of subcellular Ca2+ signaling rely on methods for labeling cells with fluorescent Ca2+ indicator dyes. In this study, we demonstrate the use of single-cell electroporation for Ca2+ indicator loading of individual neurons and small neuronal networks in rat neocortex in vitro and in vivo. Brief voltage pulses were delivered through glass pipettes positioned close to target cells. This approach resulted in reliable and rapid (within seconds) loading of somata and subsequent complete labeling of dendritic and axonal arborizations. By using simultaneous whole-cell recordings in brain slices, we directly addressed the effect of electroporation on neurons. Cell viability was high (about 85%) with recovery from the membrane permeabilization occurring within a minute. Electrical properties of recovered cells were indistinguishable before and after electroporation. In addition, Ca2+ transients with normal appearance could be evoked in dendrites, spines, and axonal boutons of electroporated cells. Using negative-stains of somata, targeted single-cell electroporation was equally applicable in vivo. We conclude that electroporation is a simple approach that permits Ca2+ indicator loading of multiple cells with low background staining within a short amount of time, which makes it especially well suited for functional imaging of subcellular Ca2+ dynamics in small neuronal networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available