4.3 Article

A moving metal mechanism for substrate cleavage by the DNA repair endonuclease APE-1

Journal

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
Volume 68, Issue 1, Pages 313-323

Publisher

WILEY
DOI: 10.1002/prot.21397

Keywords

molecular dynamic simulation; divalent metal ion; BER-pathway

Funding

  1. NCI NIH HHS [CA98664] Funding Source: Medline

Ask authors/readers for more resources

Apurinic/apyrimidinic endonuclease (APE-1) is essential for base excision repair (BER) of damaged DNA. Here molecular dynamics (MD) simulations of APE1 complexed with cleaved and uncleaved damaged DNA were used to determine the role and position of the metal ion(s) in the active site before and after DNA cleavage. The simulations started from an energy minimized wild-type structure of the metal-free APE1/damaged-DNA complex (1DE8). A grid search with one Mg2+ ion located two low energy clusters of Mg2+ consistent with the experimentally determined metal ion positions. At the start of the longer MD simulations, Mg2+ ions were placed at different positions as seen in the crystal structures and the movement of the ion was followed over the course of the trajectory. Our analysis suggests a moving metal mechanism in which one Mg2+ ion moves from the B- (more buried) to the A-site during substrate cleavage. The anticipated inversion of the phosphate oxygens occurs during the in-line cleavage reaction. Experimental results, which show competition between Ca2+ and Mg2+ for catalyzing the reaction, and high concentrations of Mg2+ are inihibitory, indicate that both sites cannot be simultaneously occupied for maximal activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available