4.5 Article

Model, prediction, and experimental verification of composition and thickness in continuous spread thin film combinatorial libraries grown by pulsed laser deposition

Journal

REVIEW OF SCIENTIFIC INSTRUMENTS
Volume 78, Issue 7, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2755783

Keywords

-

Ask authors/readers for more resources

Pulsed laser deposition was used to grow continuous spread thin film libraries of continuously varying composition as a function of position on a substrate. The thickness of each component that contributes to a library can be empirically modeled to a bimodal cosine power distribution. We deposited ternary continuous spread thin film libraries from Al2O3, HfO2, and Y2O3 targets, at two different background pressures of O-2: 1.3 and 13.3 Pa. Prior to library deposition, we deposited single component calibration films at both pressures in order to measure and fit the thickness distribution. Following the deposition and fitting of the single component films, we predict both the compositional coverage and the thickness of the libraries. Then, we map the thickness of the continuous spread libraries using spectroscopic reflectometry and measure the composition of the libraries as a function of position using mapping wavelength-dispersive spectrometry (WDS). We then compare the compositional coverage of the libraries and observe that compositional coverage is enhanced in the case of 13.3 Pa library. Our models demonstrate linear correlation coefficients of 0.98 for 1.3 Pa and 0.98 for 13.3 Pa with the WDS. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available