4.6 Article

Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 97, Issue 4, Pages 909-921

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/bit.21285

Keywords

RNAi; kinetics; nuclease resistance; bioluminescent; imaging; mathematical modeling

Funding

  1. NIBIB NIH HHS [1 R01 EB004657-01] Funding Source: Medline

Ask authors/readers for more resources

Small interfering RNA (siRNA) molecules achieve sequence-specific gene silencing through the RNA interference (RNAi) mechanism. Here, live-cell and live-animal bioluminescent imaging (BLI) is used to directly compare luciferase knockdown by unmodified and nuclease-stabilized siRNAs in rapidly (HeLa) and slowly (CCD-1074Sk) dividing cells to reveal the impact of cell division and siRNA nuclease stability on the kinetics of siRNA-mediated gene silencing. Luciferase knockdown using unmodified siRNAs lasts approximately 1 week in HeLa cells and up to 1 month in CCD-1074Sk cells. There is a slight increase in the duration of luciferase knockdown by nuclease-stabilized siRNAs relative to unmodified siRNAs after cationic lipid transfection, but this difference is not observed after electroporation. In BALB/cJ mice, a fourfold increase in maximum luciferase knockdown is observed after hydrodynamic injection (HDI) of nuclease-stabilized siRNAs relative to unmodified siRNAs, yet the overall kinetics of the recovery after knockdown are nearly identical. By using a mathematical model of siRNA-mediated gene silencing, the trends observed in the experimental data can be duplicated by changing model parameters that affect the stability of the siRNAs before they reach the cytosolic compartment. Based on these findings, we hypothesize that the stabilization advantages of nuclease-stabilized siRNAs originate primarily from effects prior to and during internalization before the siRNAs can interact with the intracellular RNAi machinery. (C) 2006 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available