4.6 Article

Enhanced tolerance of the rat myocardium to ischemia and reperfusion injury early after acute myocardial infarction

Journal

BASIC RESEARCH IN CARDIOLOGY
Volume 102, Issue 4, Pages 327-333

Publisher

DR DIETRICH STEINKOPFF VERLAG
DOI: 10.1007/s00395-007-0645-4

Keywords

acute myocardial infarction; myocardial ischemia; heat shock proteins; cardiac remodeling; cardioprotection

Ask authors/readers for more resources

It is now recognized that changes occurring during cardiac remodeling may influence the tolerance of the myocardium to ischemic stress. Therefore, the present study investigated the response of the post-infarcted heart to ischemia in an experimental model of ischemia and reperfusion injury and the possible underlying mechanisms. Acute myocardial infarction (AMI) was induced in Wistar male rats by ligating the left coronary artery (AMI, n = 13), while sham-operated rats were used as controls (SHAM, n = 11). At 2 weeks, cardiac dysfunction was observed in AMI, as indicated by the reduction of the left ventricular EF%. Isolated hearts were then subjected to 30 min of zero-flow global ischemia followed by 45 min of reperfusion. Ischemic contracture was significantly depressed in AMI hearts. Postischemic left ventricular end diastolic pressure (LVEDP45) in mmHg and LDH release in IU/g were markedly decreased; LVEDP45 was 52.1 (7.5) for AMI vs 96.6 (7.5),P < 0.05 and LDH release was 7.5 (1.0) in AMI vs 11.4 (0.56) in SHAM, P < 0.05. This response was associated with 2-fold increase in HSP70 expression in AMI hearts (noninfarcted segment), P < 0.05 vs SHAM and 1.7 fold increase in the expression of the phospho-HSP27, P < 0.05, while the expression of PKC epsilon was shown to be 1.4-fold less in AMI, P < 0.05. In conclusion, the post-infarcted heart seems to be resistant to ischemiareperfusion injury and heat shock protein 70 and 27 may be involved in this response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available