4.5 Article

Akt blocks ligand binding and protects against expanded polyglutamine androgen receptor toxicity

Journal

HUMAN MOLECULAR GENETICS
Volume 16, Issue 13, Pages 1593-1603

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddm109

Keywords

-

Funding

  1. Intramural NIH HHS Funding Source: Medline
  2. NINDS NIH HHS [R01-NS41648] Funding Source: Medline
  3. Telethon [GFP04005] Funding Source: Medline

Ask authors/readers for more resources

Spinal and bulbar muscular atrophy (SBMA) is a progressive neurodegenerative disease caused by an expansion of the polyglutamine tract in the androgen receptor (AR). Here, we investigated the regulation of AR phosphorylation in order to understand factors that may modify SBMA disease progression. We show that expanded polyglutamine AR is phosphorylated by Akt. Substitution of the AR at two Akt consensus sites, S215 and S792, with aspartate, which mimics phosphorylation, reduces ligand binding, ligand-dependent nuclear translocation, transcriptional activation and toxicity of expanded polyglutamine AR. Co-expression of constitutively active Akt and the AR has similar consequences, which are blocked by alanine substitutions at residues 215 and 792. Furthermore, in motor neuron-derived MN-1 cells toxicity associated with polyglutamine-expanded AR is rescued by co-expression with Akt. Insulin-like growth factor-1 (IGF-1) stimulation, which activates several cell survival promoting pathways, also reduces toxicity of the expanded polyglutamine AR in MN-1 cells, in a manner dependent upon phospho-inositol-3-kinase. IGF-1 rescue of AR toxicity is diminished by alanine substitutions at the Akt consensus sites. These results highlight potential targets for therapeutic intervention in SBMA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available