4.8 Article

In-Gel Digestion for Mass Spectrometric Characterization of RNA from Fluorescently Stained Polyacrylamide Gels

Journal

ANALYTICAL CHEMISTRY
Volume 82, Issue 18, Pages 7795-7803

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac101623j

Keywords

-

Ask authors/readers for more resources

Although current mass spectrometry-based proteomics technology allows for high-throughput analysis of protein components in functional ribonucleoprotein complexes, this technology has had limited application to studies of RNA itself. Here we present a protocol for RNA analysis using polyacrylamide gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry. Specifically, RNAs of interest are subjected to polyacrylamide gel electrophoresis and stained with a fluorescent dye, and RNAs in gel bands are digested with nuclease and then analyzed directly liquid chromatography-mass spectrometry, resulting in highly accurate mass values and reliable information on post-transcriptional modifications. We demonstrate that the method can be applied to the identification and chemical analysis of small RNAs in mouse embryonic stem cell extracts and of small RNAs in the spliceosomal ribonucleoprotein complex pulled down from yeast cells using a tagged protein cofactor as bait. The protocol is relatively simple and allowed us to identify not only three novel methylated nucleotide residues of RNase P RNA, U6 snRNA, and 7SL RNA prepared from mouse ES cells but also various 3'-end forms of U4, U5S, and U6 snRNAs isolated from the yeast spliceosome at the femtomole level. The method is thus a convenient tool for direct analysis of RNAs in various cellular ribonucleoprotein complexes, particularly for the analysis of post-transcriptional modifications and metabolic processing of RNA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available