4.6 Article

Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering

Journal

PHYSICAL REVIEW B
Volume 76, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.035426

Keywords

-

Ask authors/readers for more resources

Mesostructured metallic substrates composed of square pyramidal pits are shown to confine localized plasmons. Plasmon frequency tuning is demonstrated using white light reflection spectroscopy with a wide range of structure dimensions from 400 to 3000 nm. Using a simple plasmon cavity model, we demonstrate how the individual pit morphology and not their periodicity controls the resonance frequencies. By measuring the surface-enhanced Raman scattering (SERS) signals from monolayers of benzenethiol on the same range of mesostructures, we extract a quantitative connection between absorption, field enhancement, and SERS signals. The match between theory and experiment enables effective design of plasmon devices tailored for particular applications, such as optimizing SERS substrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available