4.8 Article

Practical Methods for Noise Removal: Applications to Spikes, Nonstationary Quasi-Periodic Noise, and Baseline Drift

Journal

ANALYTICAL CHEMISTRY
Volume 81, Issue 12, Pages 4987-4994

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac900161x

Keywords

-

Ask authors/readers for more resources

A new approach to signal processing of analytical time-domain data is presented. It consists in identifying the types of noise, characterizing them, and subsequently subtracting them from the otherwise unprocessed data set. The algorithms have been successfully applied to three classes of noise commonly found in analytical signals: spikes, ripples, and baseline drift. Traditional filters have been used as an intermediary step to detect and remove spikes in the signal with 96.8% success. Adaptive ensemble average subtraction has been developed to remove nonstationary ripples that have similar time scales as the signal of interest. This method increased the signal-to-noise ratio by up to 250% and led to minimal distortion of the signal, unlike conventional Fourier filters. Finally the removal of baseline drift has been achieved by subtraction of a mathematical model for the baseline. These three methods are generic, computationally fast, and applicable to a wide range of analytical techniques. Full Matlab codes and examples are included as Supporting Information.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available