4.8 Article

Aptamer-DNAzyme Hairpins for Amplified Biosensing

Journal

ANALYTICAL CHEMISTRY
Volume 81, Issue 21, Pages 9114-9119

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac901773b

Keywords

-

Funding

  1. Israel Science Foundation

Ask authors/readers for more resources

Engineered nucleic acid hairpin structures are used for the amplified analysis of low-molecular-weight substrates (adenosine monophosphate, AMP) or proteins (lysozyme). The hairpin structures consist of the anti-AMP or antilysozyme aptamer units linked to the horseradish peroxidase (HRP)-mimicking DNAzyme sequence. The HRP-mimicking DNAzyme sequence is protected in a caged, inactive structure in the stem regions of the respective hairpins, whereas the loop regions include a part of the respective aptamer sequence. The opening of the hairpins by the analytes, AMP or lysozyme, through the formation of the respective analyte-aptamer complexes, results in the self-assembly of the active HRP-mimicking DNAzyme. The DNAzyme catalyzes the H2O2-mediated oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(2)-) to the colored ABTS(center dot-), thus providing the amplified optical detection of the respective analytes. The engineered aptamer-DNAzyme hairpin structures reveal significantly improved analytical performance, as compared to analogous fluorophore-quencher-labeled hairpins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available