4.2 Article

On the micromechanics-based simulation of metal matrix composite response

Publisher

ASME
DOI: 10.1115/1.2744419

Keywords

-

Ask authors/readers for more resources

The response of metal matrix composites is affected by factors such as inclusion distribution and shape, inclusion/matrix interfacial bond, residual stresses, and fabrication-altered in situ matrix properties. These effects are studied using a finite-volume micro-mechanics model whose extensive modeling capabilities are sufficient to account,for these diverse factors. A consistent micromechanics-aided methodology is developed for extracting the unknown in situ matrix plastic parameters using a minimum amount of experimental data. Subsequent correlation of the micromechanics-based predictions with carefully generated data on off-axis response of unidirectional boron/aluminum composite specimens under tensile and compressive axial loading validates the model's predictive capability and quantifies the importance of each factor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available